An Overture Overview

Bill Henshaw

Center for Applied Scientific Computing Lawrence Livermore National Laboratory Livermore, CA

Twelfth DOE ACTS Workshop, Berkeley California, 2011

Downloading Overture and the CG (Composite Grid) suite of PDE solvers.

Overture and CG are freely available from the web:

www.llnl.gov/CASC/Overture

Acknowledgments.

Supported by

Department of Energy, Office of Science
ASCR Applied Math Program
LLNL: Laboratory Directed Research and Development (LDRD) program

Current Overture developers

Kyle Chand Bill Henshaw

Major Contributors

Don Schwendeman (RPI), Jeff Banks (LLNL).

Overture: a toolkit for solving partial differential equations (PDEs) on overlapping grids.

Top three reasons for using Overture:

- You need to efficiently solve a PDE on a complex geometry.
- 2 You need to solve a PDE on a moving geometry.
- 3 You need to generate an overlapping grid.

You can

- write your own PDE solver using the capabilities provided by Overture.
- use (or change) an existing PDE solver from the CG suite.

Henshaw (LLNL) Overture ACTS XII 4 / 22

Overture: a toolkit for solving partial differential equations (PDEs) on overlapping grids.

Top three reasons for using Overture:

- You need to efficiently solve a PDE on a complex geometry.
- 2 You need to solve a PDE on a moving geometry.
- You need to generate an overlapping grid.

You can

- write your own PDE solver using the capabilities provided by Overture.
- use (or change) an existing PDE solver from the CG suite.

Henshaw (LLNL) Overture ACTS XII 4/22

- Overlapping grids can be rapidly generated as bodies move.
- High quality grids under large displacements.
- Cartesian grids for efficiency.
- Efficient for high-order accurate methods.

- Overlapping grids can be rapidly generated as bodies move.
- High quality grids under large displacements.
- Cartesian grids for efficiency.
- Efficient for high-order accurate methods.

- Overlapping grids can be rapidly generated as bodies move.
- High quality grids under large displacements.
- Cartesian grids for efficiency.
- Efficient for high-order accurate methods.

- Overlapping grids can be rapidly generated as bodies move.
- High quality grids under large displacements.
- Cartesian grids for efficiency.
- Efficient for high-order accurate methods.

- Overlapping grids can be rapidly generated as bodies move.
- High quality grids under large displacements.
- Cartesian grids for efficiency.
- Efficient for high-order accurate methods.

- Overlapping grids can be rapidly generated as bodies move.
- High quality grids under large displacements.
- Cartesian grids for efficiency.
- Efficient for high-order accurate methods.

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

Henshaw (LLNL) Overture ACTS XII 6 / 22

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

- high level C++ interface for rapid prototyping of PDE solvers.
- built upon optimized C and fortran kernels.
- library of finite-difference operators: conservative and non-conservative, 2nd, 4th, 6th and 8th order accurate approximations.
- support for moving grids.
- support for block structured adaptive mesh refinement (AMR).
- extensive grid generation capabilities.
- CAD fixup tools (for CAD from IGES files).
- interactive graphics and data base support (HDF).

A++/P++

OpenGL HDF

PETSc

OpenGL HDF

PETSc

Mappings

CAD fixup Grid generation rap, hype mbuilder

Graphics

A++/P++ array class OpenGL HDF

PETSc

Oges
Linear Solvers

Ogmg Multigrid

Ogen Overlapping

Ugen Unstructured

AMR

Grids

GridFunctions

Operators

Mappings

CAD fixup Grid generation rap, hype mbuilder

Graphics

A++/P++ array class OpenGL HDF

PETSc

Ogen Overlapping Ugen Unstructured

AMR

Grids

GridFunctions

Operators

Mappings

CAD fixup Grid generation rap, hype mbuilder

Graphics

A++/P++ array class OpenGL HDF

PETSc

Ogen Overlapping Ugen Unstructured

AMR

Grids

GridFunctions

Operators

Mappings

CAD fixup Grid generation rap, hype mbuilder

Graphics

A++/P++ array class OpenGL HDF

PETSc

- cgad: advection diffusion equations.
- cgins: incompressible Navier-Stokes with heat transfer.
- cgcns: compressible Navier-Stokes, reactive Euler equations.
- cgmp: multi-physics solver (e.g. conjugate heat transfer).
- cgmx: time domain Maxwell's equations solver.
- cgsm: elastic wave equation (linear elasticity).

- cgad: advection diffusion equations.
- cgins: incompressible Navier-Stokes with heat transfer.
- cgcns: compressible Navier-Stokes, reactive Euler equations.
- cgmp: multi-physics solver (e.g. conjugate heat transfer).
- cgmx: time domain Maxwell's equations solver.
- cgsm: elastic wave equation (linear elasticity).

- cgad: advection diffusion equations.
- cgins: incompressible Navier-Stokes with heat transfer.
- cgcns: compressible Navier-Stokes, reactive Euler equations.
- cgmp: multi-physics solver (e.g. conjugate heat transfer).
- cgmx: time domain Maxwell's equations solver.
- cgsm: elastic wave equation (linear elasticity).

- cgad: advection diffusion equations.
- o cgins: incompressible Navier-Stokes with heat transfer.
- cgcns: compressible Navier-Stokes, reactive Euler equations.
- cgmp: multi-physics solver (e.g. conjugate heat transfer).
- cgmx: time domain Maxwell's equations solver.
- cgsm: elastic wave equation (linear elasticity).

- cgad: advection diffusion equations.
- o cgins: incompressible Navier-Stokes with heat transfer.
- cgcns: compressible Navier-Stokes, reactive Euler equations.
- cgmp: multi-physics solver (e.g. conjugate heat transfer).
- cgmx: time domain Maxwell's equations solver.
- cgsm: elastic wave equation (linear elasticity).

- cgad: advection diffusion equations.
- o cgins: incompressible Navier-Stokes with heat transfer.
- cgcns: compressible Navier-Stokes, reactive Euler equations.
- cgmp: multi-physics solver (e.g. conjugate heat transfer).
- cgmx: time domain Maxwell's equations solver.
- cgsm: elastic wave equation (linear elasticity).

- cgad: advection diffusion equations.
- cgins: incompressible Navier-Stokes with heat transfer.
- cgcns: compressible Navier-Stokes, reactive Euler equations.
- cgmp: multi-physics solver (e.g. conjugate heat transfer).
- cgmx: time domain Maxwell's equations solver.
- cgsm: elastic wave equation (linear elasticity).

Components of an Overlapping Grid

Components of an Overlapping Grid

9/22

Components of an Overlapping Grid

9/22

Ogen can be used to build 2D overlapping grids:

Ogen can be used to build 3D overlapping grids:

But is built upon mainly Fortran kernels.

```
Solve u_t + au_x + bu_y = \nu(u_{xx} + u_{yy})
```

But is built upon mainly Fortran kernels.

```
Solve u_t + au_x + bu_y = \nu(u_{xx} + u_{yy})
```

CompositeGrid cg; // create a composite grid getFromADataBaseFile(cg,"myGrid.hdf");

ACTS XII

But is built upon mainly Fortran kernels.

```
Solve u_t + au_x + bu_y = \nu(u_{xx} + u_{yy})
CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1.;
```

ACTS XII

But is built upon mainly Fortran kernels.

```
Solve u_t + au_x + bu_y = \nu(u_{xx} + u_{yy})
CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1.;
CompositeGridOperators op(cg); // operators
u.setOperators(op);
for(int step=0; step<100; step++)
```


12/22

But is built upon mainly Fortran kernels.

```
Solve u_t + au_x + bu_y = \nu(u_{xx} + u_{yy})
CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1.;
CompositeGridOperators op(cg); // operators
u.setOperators(op);
float t=0, dt=.005, a=1., b=1., nu=.1;
for(int step=0; step<100; step++)
  u+=dt^*(-a^*u.x()-b^*u.y()+nu^*(u.xx()+u.yy())); // forward Euler
  t+=dt:
  u.interpolate();
  u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);
  u.finishBoundaryConditions();
```


3. Overlapping grid

Overture is used by research groups worldwide

- Blood flow in veins with blood clot filters. (Mike Singer, LLNL).
- Pitching airfoils and micro-air vehicles (Yongsheng Lian, U. of Louisville)
- Relativistic hydrodynamics and Einstein field equations (Philip Blakely, Nikos Nikiforakis, U. Cambridge).
- Compressible flow/ice-formation (Graeme Leese, U. Cambridge).
- Tear films and droplets (Rich Braun U. Delaware, Kara Maki UMN).
- High-order accurate subsonic/transonic aero-acoustics (Phillipe Lafon, CNRS, EDF, France).
- Low Reynolds flow for pitching airfoils (D. Chandar, R. Yapalparvi, M. Damodaran, NTU, Singapore).
- Incompressible flow in pumps (J.P. Potanza, Shell Oil, Houston).
- High-order accurate, compact Hermite-Taylor schemes (Tom Hagstrom, SMU, Dallas).

Cgins: incompressible Navier-Stokes solver.

Henshaw (LLNL)

- 2nd-order and 4th-order accurate (DNS).
- support for moving rigid-bodies (not parallel yet).
- heat transfer (Boussinesq approximation).
- semi-implicit (time accurate), pseudo steady-state (efficient line solver), full implicit.

• WDH., A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids, J. Comput. Phys, **113**, no. 1, (1994) 13–25.

Flow past a blood-clot filter using cgins

M.A. Singer, WDH, S.L. Wang, Computational Modeling of Blood Flow in the Trapease Inferior Vena Cava Filter, Journal of Vascular and Interventional Radiology, **20**, 2009.

Cgcns: compressible N-S and reactive-Euler.

- reactive and non-reactive Euler equations, Don Schwendeman (RPI).
- compressible Navier-Stokes.
- multi-fluid formulation, Jeff Banks (LLNL).
- adaptive mesh refinement and moving grids.

- WDH., D. W. Schwendeman, *Parallel Computation of Three-Dimensional Flows using Overlapping Grids with Adaptive Mesh Refinement*, J. Comp. Phys. **227** (2008).
- WDH., DWS, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005).
- WDH., DWS, An adaptive numerical scheme for high-speed reactive flow on overlapping grids,
- J. Comp. Phys. 191 (2003).

Cgmx: electromagnetics solver.

- fourth-order accurate, 2D, 3D.
- Efficient time-stepping with the modified-equation approach
- High-order accurate symmetric difference approximations.
- High-order-accurate centered boundary and interface conditions.

• WDH., A High-Order Accurate Parallel Solver for Maxwell's Equations on Overlapping Grids, SIAM J. Scientific Computing, **28**, no. 5, (2006).

Cgsm: solve the elastic wave equation.

- linear elasticity on overlapping grids, with adaptive mesh refinement,
- conservative finite difference scheme for the second-order system,

upwind Godunov scheme for the first-order-system.

• D. Appelö, J.W. Banks, WDH, D.W. Schwendeman, *Numerical Methods for Solid Mechanics Overlapping Grids: Linear Elasticity*, LLNL-JRNL-42223, submitted.

Cgmp: a multi-domain multi-physics solver.

Conjugate heat transfer: coupling incompressible flow to heat conduction in solids.

 a partitioned solution algorithm (separate physics solvers in each sub-domain),

- (cgins) incompressible Navier-Stokes equations (with Boussinesq approximation) for fluid domains,
- (cgad) heat equation for solid domains,
- a key issue is interface coupling.

• WDH., K. K. Chand, A Composite Grid Solver for Conjugate Heat Transfer in Fluid-Structure Systems, J. Comput. Phys, 2009.

The multi-domain composite grid approach

The fluid and solid sub-domains, overlapping grids and solution (temperature and streamlines) to a CHT problem. Solvers: cgins (fluid sub-domains), cgad (solid sub-domains), cgmp (coupled problem).

Summary.

- Overture: a toolkit for solving PDEs on overlapping grids.
- CG: a suite of PDE solvers for overlapping grids.

www.llnl.gov/CASC/Overture

